线性代数笔记
行列式
题型
\[\begin{aligned} 1. (\left| \begin{matrix} x & a & \cdots & a \\ a & x & \cdots & a \\ \vdots & \vdots & \ddots & \vdots \\ a & a & \cdots & x \\ \end{matrix} \right| = \left( x - a \right)^{n - 1}\left\lbrack x + \left( n - 1 \right)a \right\rbrack) \end{aligned}\]
例:
\[\begin{aligned} [\left| \begin{matrix} 2 & 3 & 3 & 3 \\ 3 & 2 & 3 & 3 \\ 3 & 3 & 2 & 3 \\ 3 & 3 & 3 & 2 \\ \end{matrix} \right| = \left( 2 - 3 \right)^{4 - 1}\left\lbrack 2 + \left( 4 - 1 \right) \times 3 \right\rbrack = - 11] \end{aligned}\]
对于M相加的,将M转换为A再计算。